# RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. THIRD SEMESTER EXAMINATION, DECEMBER 2015

SECOND YEAR [BATCH 2014-17]

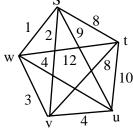
Date : 15/12/2015 Time : 11 am - 3 pm COMPUTER SCIENCE [Hons] Paper : III

Full Marks : 75

[2]

[5]

## [Use a separate Answer Book for each group]


## <u>Group – A</u>

| Ans | swer                              | any one question :                                                                                                                                                                                                                                                                               |       |  |  |  |  |  |  |  |
|-----|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|--|--|--|--|--|
| 1.  | Exp                               | plain the following terms : [2×                                                                                                                                                                                                                                                                  | (2.5] |  |  |  |  |  |  |  |
|     | a)                                | equivalence relation                                                                                                                                                                                                                                                                             |       |  |  |  |  |  |  |  |
|     | b)                                | bijective function                                                                                                                                                                                                                                                                               |       |  |  |  |  |  |  |  |
| 2.  | Det                               | Define the following terms :                                                                                                                                                                                                                                                                     |       |  |  |  |  |  |  |  |
|     | a)                                | Mutually exclusive and exhaustive events                                                                                                                                                                                                                                                         | [2]   |  |  |  |  |  |  |  |
|     | b)                                | State the Pigeon-Hole principle                                                                                                                                                                                                                                                                  | [3]   |  |  |  |  |  |  |  |
| Ans | Answer <b>any two</b> questions : |                                                                                                                                                                                                                                                                                                  |       |  |  |  |  |  |  |  |
| 3.  | a)                                | For three non empty sets A, B and C prove that $A - (B \cap C) = (A - B) \cup (A - C)$ .                                                                                                                                                                                                         | [3]   |  |  |  |  |  |  |  |
|     | b)                                | How many seven-digit telephone numbers are there that begin with 256 and contain at least one 1 and at least one 0?                                                                                                                                                                              | [3]   |  |  |  |  |  |  |  |
|     | c)                                | Show that the relation $(x, y)R(a, b) \Leftrightarrow x^2 + y^2 = a^2 + b^2$ is an equivalence relation on the plane                                                                                                                                                                             |       |  |  |  |  |  |  |  |
|     |                                   |                                                                                                                                                                                                                                                                                                  | 2+2]  |  |  |  |  |  |  |  |
| 4.  | a)                                | Find a recurrence relation and give initial conditions for the number of bit strings of length n, that do not have two consecutive 0s.                                                                                                                                                           |       |  |  |  |  |  |  |  |
|     |                                   | How many such bit strings are there of length five?                                                                                                                                                                                                                                              | 3+1]  |  |  |  |  |  |  |  |
|     | b)                                | During a month with 30 days, a baseball team play at least one game a day, but no more than 45 games. Show that there must be a period of some number of consecutive days during which the team must play exactly 14 games.                                                                      | [2]   |  |  |  |  |  |  |  |
|     | c)                                | team must play exactly 14 games.<br>Find a closed form for the generating function of the following sequence :                                                                                                                                                                                   | [3]   |  |  |  |  |  |  |  |
|     | C)                                | 3, 0, -3, 0, 3, 0, -3, 0, 3,                                                                                                                                                                                                                                                                     | [3]   |  |  |  |  |  |  |  |
| _   | ``                                |                                                                                                                                                                                                                                                                                                  |       |  |  |  |  |  |  |  |
| 5.  | a)<br>b)                          |                                                                                                                                                                                                                                                                                                  | 2+3]  |  |  |  |  |  |  |  |
|     | b)                                | A particle that moves in unit step starting from the origin. Each step is one unit in the positive direction, with probability p along the x-axis and probability $q = (1 - p)$ along the y-axis. We further assume that each step is taken independently of the others. What is the probability |       |  |  |  |  |  |  |  |
|     |                                   | distribution of the position of this particle after five steps?                                                                                                                                                                                                                                  | [5]   |  |  |  |  |  |  |  |
| 6.  | a)                                | Define Ring.                                                                                                                                                                                                                                                                                     | [4]   |  |  |  |  |  |  |  |
|     | b)                                | Show that the set R of all real valued continuous function of x defined over the interval $(0,1)$ form a ring with respect to addition and multiplication defined as follows $(f+g)(x) = f(x)+g(x)$ and $(f \cdot g)(x) = f(x) \cdot g(x)$ .                                                     | [6]   |  |  |  |  |  |  |  |
|     |                                   | <u>Group – B</u>                                                                                                                                                                                                                                                                                 |       |  |  |  |  |  |  |  |
|     |                                   |                                                                                                                                                                                                                                                                                                  |       |  |  |  |  |  |  |  |
| Ans | swer                              | any one question :                                                                                                                                                                                                                                                                               |       |  |  |  |  |  |  |  |

- 7. a) Define chromatic number of a graph with an example.
  - b) How many distinct hamiltonian cycles are there in a complete graph  $K_n (n \ge 3)$ ? Justify your answer. [3]
- 8. What do you mean by a degree sequence? Where and how can it be used?

Answer any one question :

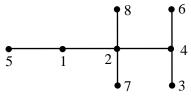
- 9. a) Prove that for any graph G,  $\alpha_0(G) + \beta_0(G) = n(G)$ , n(G) is the number of vertices in the graph G.  $\alpha_0(G)$  is the maximum size of independent set in G.  $\beta_0(G)$  is the minimum size of vertex cover in G.
  - b) Find the minimum spanning tree of the following weighted graph using Kruskal's algorithm. Show the construction step by step. [4]



[3]

[3]

[4]


[3]

[3]

[3]

[3]

- c) Give the conceptual difference between the Kruskal's and Prim's algorithm to find the minimum spanning tree of a simple graph.
- 10. a) Prove that every tournament has a hamitonian directed path.
  - b) Prove that every tree T on n vertices ( $n \ge 2$ ) contains at least two vertices of degree 1.
  - c) How many perfect matchings are there in  $K_{n,n}$  graph.
- Prove that if G is a simple planar graph with at least three vertices, then m < 3n 6. If also G is 11. a) triangle free then m < 2n - 4. n is the number of vertices in the graph. m is the number of edges in the graph. [5]
  - b) Prove that in any directed graph, the sum of all in-degrees is equal to the sum of all out-degrees. [2]
  - c) What is the prufer code of the following tree?

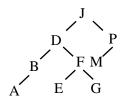




Answer **any one** question :

12. Explain the concept of pure virtual destructor with suitable example. Does its presence make a class Abstract? Justify. [3+2]13. a) What do you mean by object slicing? [2] b) Explain the inheritance property of object oriented programming. [3]

#### Answer any one question :


- "Static member functions can only use static data members within it" --Justify. Explain the 14. a) concept of static object in C++. [3+2]
  - b) What do you mean by Name-space? Can Name-space be nested? [2+3]
- 15. a) What do you mean by 'Handling an exception'? How can you catch multiple exceptions using a single catch block? [2+2]
  - b) Explain the concept of template function over loading using suitable example. [3] [3]
  - c) What do you mean by name-mangling? Explain with examples.

### <u>Group – D</u>

#### Answer any two questions :

16. a) Consider a non-empty binary tree with "n" nodes. Let n<sub>i</sub> be the no of nodes with i children (i = 0, 1, 2). Then prove that :  $n_2 = n_0 - 1$ .

- b) Select a data structure and give an outline to solve the following problem :
   "You are supplied with n(given) number of positive integers. The problem is to find the k<sup>th</sup> smallest of the given list of integers. Note that the list of given integers may contain repeated values also." [4]
- c) Given the root of a binary tree, write an algorithm (or, C code) to find the distance between two given keys K<sub>1</sub> and K<sub>2</sub>. Your algorithm should give appropriate message in case K<sub>1</sub> or K<sub>2</sub> is absent in the tree.
- 17. a) Sort the following number using heap sort : 2, 3, 81, 64, 4, 25, 36, 16, 9, 49. Show each steps. [5]
  - b) Given the postorder of a binary search tree as follows :
    20 42 40 38 44 33 22 77 66 99 55
    If possible, construct the binary search tree. Otherwise, give reasons why it is not possible? [5]
- 18. a) Define a B tree. Discuss about the advantage and disadvantage of using B-tree. [3]
  - b) From the given AVL tree, delete M indicating the type of rotations used.



[2]

c) Suppose we have a 10,000 character data file : The file contains only 6 characters, appearing with the following frequencies :

| Frequency in 100s | а  | b | с | d  | e  | f  |
|-------------------|----|---|---|----|----|----|
|                   | 45 | 5 | 9 | 12 | 16 | 13 |

Use Huffman coding to compress the data. How much space will be needed to store this compressed data? [5]

\_\_\_\_\_ × \_\_\_\_\_